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The authors develop a transverse dielectric matrix and from it they calculate the shear mode dispersion in
strongly coupled charged-particle bilayer liquids in the T=0 quantum domain. The formulation is based on the
classical quasilocalized charge approximation �QLCA� and extends the QLCA formalism into the quantum
domain. Its development parallels and complements the development of a similarly extended longitudinal
dielectric matrix formalism reported in a recent companion work �K. I. Golden, H. Mahassen, G. J. Kalman, G.
Senatore, and F. Rapisarda, Phys. Rev. E 71, 036401 �2005��. Using pair correlation function data generated
from diffusion Monte Carlo simulations, the authors calculate the dispersion of the in-phase and out-of-phase
shear modes over a wide range of high-rs values and layer separations. Over the coupling range 10�rs�30
and for layer separations 0.2/��n�d�0.5/��n, the present study predicts the existence of a robust out-of-
phase gapped shear mode dispersion in the domain of the q ,�-plane above the left boundary of the RPA
single-pair excitation region; under these conditions, the out-of-phase collective excitation is entirely immune
to Landau damping and can be safely considered to be mostly unaffected by diffusive-migrational damping.
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I. INTRODUCTION

By now, it is well documented that Coulomb �1–10� and
complex plasma �11–17� systems in the strongly correlated
liquid phase can support transverse shear waves. This is
borne out by molecular dynamics �MD� simulations
�1,2,6,10,11,13� performed on a variety of classical charged-
particle liquid-phase configurations over the past three de-
cades, beginning with the classical three-dimensional �3D�
one-component plasma �OCP� �1,6� and progressing to more
recent MD simulations of electronic bilayer liquids �10� and
complex plasmas �11,13�. Recent experiments carried out by
Piel, Nosenko and Goree �17� confirm the existence of
strongly to moderately damped shear waves in 2D complex
�dusty� plasmas in the strongly coupled liquid phase.

Numerous theoretical studies of transverse shear mode
dispersion in classical charged-particle liquids have been car-
ried out. Agarwal, Thakur and Pathak �3� derived the second
frequency-moment sum rule for the transverse current corre-
lation function in 2D classical electron liquids and used the
sum rule to infer the shear mode oscillation frequency. The
quasilocalized charge approximation �QLCA� formulated by
Kalman and Golden �9,16� has been repeatedly used to cal-

culate transverse shear mode dispersion in the 3D classical
OCP �4�, in layered classical electron liquids �5,7–10�, and in
3D and 2D Yukawa liquids �12,13�. Shear mode dispersion
relations for 3D Yukawa liquids have also been derived by
Kaw and Sen �14� using a generalized hydrodynamics de-
scription of the dust dynamics, and by Murillo �15� using a
Mori memory function approach based on the generalized
viscosity.

To date, all of the above investigations have been carried
out in the classical domain, and, to the best of our knowl-
edge, the problem of transverse shear mode dispersion in
Coulomb liquids in the quantum domain remains largely un-
explored. Of particular interest in this regard are semicon-
ductor layered electron �hole� liquids in the low-density
�high-rs� regime. In the area of condensed matter plasmas,
there has been considerable interest in fabricating such
charged-particle systems. So far, advances in modern semi-
conductor technology have made it possible to routinely fab-
ricate high mobility single 2D layers in a strongly correlated
Coulomb liquid at temperatures well below and comparable
with the Fermi temperature �18�. Experimental studies car-
ried out in this domain include recent inelastic light-
scattering based measurements of longitudinal plasmon dis-
persion in high-quality, low-density 2D electron liquids �19�.
One would expect that similar high-rs experimental
techniques—applied as well to measurements of shear mode
dispersion—will become available also to bilayers and
double quantum wells in the near future. In this context, the
theoretical study proposed in the present work would seem to
be especially timely.
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This paper addresses the problem of transverse shear
mode dispersion in strongly coupled electronic bilayer liq-
uids in the zero-temperature �T=0� quantum domain. The
symmetric bilayer is modeled as two equal-density �n1=n2

=n=N /�� monolayers of mobile electrons �or holes�, each
layer immersed in its own 2D uniform neutralizing back-
ground of opposite charge. The N charges in each monolayer
occupy the large but bounded area � in the planes z=0 and
z=d of a Cartesian coordinate system. In the present study,
the interlayer spacing d always exceeds the effective Bohr
radius, aB=�2�s /me2 ��s is the dielectric constant of the sub-
strate�, so that interlayer tunneling can be neglected. The
interaction potentials for the symmetric charged-particle bi-
layer are given as

�11�r� = �22�r� = e2/��s/r�, �12�r� = e2/��s
�r2 + d2� ,

�11�q� = �22�q� = 2�e2/��sq� ,

�12�q� = �2�e2/��sq��exp�− qd� , �1�

r and q being the in-layer separation distance and wave num-
ber, respectively. The parameter rs=a /aB is the customary
measure of the in-layer coupling strength in the zero-
temperature quantum domain; a=1/��n is the 2D Wigner-
Seitz radius.

The approach followed in this paper is based on an exten-
sion of the transverse QLCA into the quantum domain. The
QLCA has proved to be consistently successful in the de-
scription of collective mode dispersion in classical Coulomb
liquids as borne out by comparisons with a series of MD
simulations �2,6,9,10,13�. In the QLCA description of
strongly coupled Coulomb liquids, the charged particles are
trapped in local potential fluctuations. The fluctuating poten-
tial creates local momentary potential wells at random loca-
tions whose relative positions are strongly correlated with
each other. Particles oscillate in the potential wells while the
potential landscape dissolves into a different structure on a
longer time scale. As a result, the particles slowly diffuse out
from their temporary locations, leading to damping of the
oscillations. Self diffusion is the principal transport mecha-
nism underlying this damping �4,5,8,9�. A first-principles mi-
croscopic procedure has yet to be worked out for incorporat-
ing this “diffusive-migrational” damping mechanism into the
QLCA formalism. So, as in all the previous QLCA studies of
collective mode dispersion in classical Coulomb and Yukawa
liquids, its incorporation in the collective mode analysis of
the present work will be done on an ad hoc basis.

The development to be followed here parallels that of a
recent companion paper �20� �see also Ref. �21�� in which
the longitudinal QLCA dielectric matrix was extended in a
way that made it suitable for the description of plasmon dis-
persion in strongly coupled electronic bilayers in the zero-
temperature quantum domain.

According to the QLCA description of the classical bi-
layer liquid �8–10�, the transverse shear mode structure con-
sists of an acoustic ��	q� in phase �+� mode �where the two
layers oscillate in unison� and a gapped out-of-phase �−�
mode �where the oscillations of the two layers exhibit a 180°

phase difference�. The out-of-phase transverse shear and lon-
gitudinal plasma modes share the same q=0 finite frequency
energy gap �10�.

Crucial to the extended QLCA approach is the description
of the positions of the localized particles in terms of equilib-
rium pair distribution functions. The latter, along with the
phase diagram for the symmetric electronic bilayer liquid,
has been generated over a wide range of rs and d /a values
from diffusion Monte Carlo �DMC� simulations carried out
by Rapisarda and Senatore �20,22�a�–22�d�,22�f��. A full
compilation of the details of their DMC study is also avail-
able �22�e��.

Both the DMC simulations and the extended quantum
QLCA calculations in the present work are limited to the
extent that tunneling between the two layers is ignored. Con-
sequently, the range of validity for the present analysis is
necessarily restricted to layer separations d
aB. Note, how-
ever, that for rs
1, this condition still substantially allows
for d�a, and, consequently, for strong interlayer interac-
tions.

The organization of the paper is as follows. In Sec. II, we
develop the extended transverse QLCA for charged-particle
bilayer liquids and we formulate the transverse dielectric ma-
trix �AB

T �q ,�� and its in-phase �+� and out-of-phase �−� ma-
trix elements �±

T�q ,��. The transverse dielectric matrix ele-
ments go beyond the RPA in that they contain static in-layer
exchange-correlation and interlayer correlation contributions
GAB

T �q� that are ultimately expressed in terms of the pair
correlation functions generated from the DMC computer
simulations �20� cited above. Formulas expressing GAB

T �q
→0� in terms of inlayer and interlayer interaction energies
are displayed in Sec. II. In Sec. III, we analyze the transverse
shear mode relations in the non-retarded �quasistatic� limit
that result from the zeros of 1 /�±

T�q ,��. Conclusions are
drawn in Sec. IV.

A main ingredient of the Sec. II formulation of the trans-
verse dielectric matrix is the 2D current-density transverse
Lindhard function �0

T�q ,��. A variant of it was derived some
time ago by Toyoda, Gudmundsson, and Takahashi �23�a��;
see also Ref. �23�b��. In the Appendix, we derive the 2D
Lindhard formula for �0

T�q ,�� in a form that is especially
well tailored to its implementation in the QLCA formalism
of the present work. The Appendix derivation parallels the
Ehrenreich-Cohen �24� and Kliewer-Fuchs �25� self-
consistent field �SCF� calculations for the three-dimensional
electron gas.

II. TRANSVERSE DIELECTRIC MATRIX

In this section, we formulate the transverse dielectric re-
sponse matrix for strongly coupled charged-particle bilayer
liquids in the zero-temperature quantum domain. Parallel to
the development Ref. �20�, the starting point for the present
derivation is the classical �cl� layer-space dielectric matrix,
�AB

T �q ,��, that results from the QLCA �9�:
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��AB
T �q,���cl = AB −

q2c2

�2 �
C

�AC�q,��

�
n

mc2�I>
>

−
q2c2

�2

n

mc2D>
>

T�q�	
CB

−1

, �2�

A, B, C indices label the layers �A ,B ,C=1,2�; the T super-
script indicates transverse �with respect to in-plane wave
vector q� elements of the dielectric tensor �>

>AB; �AB�q ,��
=�AB�q����q ,�� /q� is the layer-layer interaction potential
matrix featuring the familiar attenuation constant ��q ,��
=�q2−�2 /c2 that shows up in the phenomenological electro-
dynamics of 2D �26� and layered charged-particle structures
�27�; I>

>
is the �2�2� identity matrix and �nq2 /m�D>

>

T�q�
is the non-RPA correlational part of the transverse dynami-
cal matrix. Equation �2� is derived from the microscopic

equation of motion for the collective coordinates ��A
q�t�,

defined through the Fourier representation ��A
i �t�

= �1/�Nm��q��A
q�t�exp�iq ·xA

i � relating ��A
q to the displacement

��A
i of particle i in layer A. The QLCA matrix elements are

expressed in terms of S11�q�, S12�q� structure factors, or
equivalently, in terms of the corresponding equilibrium
pair correlation functions hAB�r�= �1/N��q�SAB�q�
−AB�exp�iq ·r� �8,9�:

D11
T �q� =

1

N
�
q�
�q�2

q2 −
�q · q��2

q4 	�11�q���S11��q − q���

− S11�q��� −
1

N
�
q�
�q�2

q2 −
�q · q��2

q4 	�12�q��S12�q��

�3a�

=
�e2

q2 

0

�

dr
1

r2h11�r��1 + 2J0�qr� − 6
J1�qr�

qr
	

+
�e2

q2 

0

�

dr
rh12�r�

�r2 + d2�3/2�1 −
3d2

r2 + d2	 , �3b�

D12
T �q� =

1

N
�
q�
�q�2

q2 −
�q · q��2

q4 	�12�q��S12��q − q���

�4a�

=−
�e2

q2 

0

�

dr
rh12�r�

�r2 + d2�3/2�1 −
3d2

r2 + d2	
+

�e2

q2 

0

�

dr
rh12�r�

�r2 + d2�3/2

��1 + 2J0�qr� − 6
J1�qr�

qr
	 −

3�e2d2

q2

�

0

�

dr
rh12�r�

�r2 + d2�5/2�1 − 2
J1�qr�

qr
	 , �4b�

J0�qr� and J1�qr� are Bessel functions of order zero and one,

respectively. At long wavelengths �q→0�, Eqs. �3a� and �4a�
simplify to

D11
T �q → 0� = −

1

16N
�
q�

�11�q���S11�q�� − 1�

−
1

2Nq2�
q�

q�2�12�q��S12�q�� , �5�

D12
T �q → 0� =

1

2Nq2�
q�

q�2�12�q��S12�q��

−
1

16N
�
q�

�12�q��S12�q���1 + q�d − q�2d2� .

�6�

The expressions �3� and �4� can be readily identified as the
correlational contributions to the non-retarded second-
frequency-moment sum rules

��AB
2 ��q� = �m


−�

� d�

2�
�2CAB�q,�� =

q2

�m
AB +

nq2

m�
DAB

T �q�

�7�

for the transverse current-current correlation function

CAB�q,t� =
1

N
�jqA

T �t�j−qB
T �0��; �8�

jqA
T �t�=�iviA

T �t�exp�−iq ·xiA� is the transverse microscopic
particle current density in layer A and �−1=kT. The assured
strict compliance with these sum rules is a crucial ingredient
of the QLCA description of electronic bilayer liquids in view
of the fact that

��11
2 ��q = 0� − ��12

2 ��q = 0� = −
1

m�2�
q�

q�2�12�q��S12�q�� ,

�9�

establishes the one-to-one correspondence between the sum
rule and the existence of the long-wavelength finite fre-
quency �energy gap �Eq. �25� � below� shared by the out-of-
phase plasmon and shear modes. The non-retarded transverse
bilayer sum rule formula �7�—reported here for the first
time—generalizes the transverse second-frequency-moment
sum rule established by Agarwal, Thakur, and Pathak �3� for
the isolated 2D classical electron liquid.

Recalling what was stated in Ref. �20�, the derivation of
Eq. �2� is predicated on the assumption that random motions
are negligible: this is a reasonable assumption for a low-
temperature classical charged-particle bilayer in the strong
coupling regime where the potential energy dominates over
the thermal energy that is responsible for random motion, so
that at sufficiently low temperatures one can neglect the ran-
dom motion of the particles. In contrast, for the zero-
temperature quantum bilayer, the low temperature does not
ensure that the random motion of the particles is negligible,
and one should therefore take account of the ground-state
kinetic energy of the particles. In order to accomplish this,
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we observe that, in Eq. �2�, the −n /mc2 factor can be imme-
diately identified as the Vlasov value of the 2D current-
density response function �compare Eqs. �2� and �A22�� cor-
responding to the kinetic momentum distribution function
f�p�n�p�. One may therefore assume that for a Fermi
distribution of momenta, the appropriate replacement for
−n /mc2 is the Lindhard current-density response matrix
�AB

T�0��q ,��=�0
T�q ,��AB, where �see the Appendix�

�0
T�q,�� = −

n

mc2�1 +
2�2

Nm
�
k
�k2 −

�k · q�2

q2 	
�

f��k+q� − f��k�
�k+q − �k + � � + io� , �10�

f��k� is the equilibrium Fermi function for a free electron
with energy �k=�2k2 /2m. The resulting dielectric matrix
takes the form

�AB
T �q,�� = AB +

q2c2

�2 �
C

�AC�q,���0
T�q,��

��I>
>

+
q2c2

�2 �0
T�q,��D>

>

T�q�	
CB

−1

�11�

�A ,B ,C=1,2�. We note that the transverse dielectric matrix
�11� and all other physical quantities can be diagonalized by
rotating into the space spanned by the in-phase �+� and out-

of-phase �−� directions: for the symmetric bilayer the result-
ing matrix elements are �±�q ,��=�11�q ,��±�12�q ,��,
�±�q ,��=�11�q ,��±�12�q ,��, etc. For notational conve-
nience, we introduce the function �0

T�q ,��
= �q2c2 /�2��0

T�q ,��, which masks the retardation effect, that
is,

�0
T�q,�� = −

nq2

m�2�1 +
2�2

Nm
�
k
�k2 −

�k · q�2

q2 	
�

f��k+q� − f��k�
�k+q − �k + � � + io� . �12�

Upon diagonalizing Eq. �11� and then going to the non-
retarded �c→ � � limit, the limit that is of interest in the
present work, we obtain the compact expression

�±
T�q,�� = 1 +

�±�q��0
T�q,��

1 + �0
T�q,���D11

T �q� ± D12
T �q��

. �13�

The D11
T �q� and D12

T �q� matrix elements in Eqs. �11� and �13�
are formally identical to D11

T �q� and D12
T �q� in Eqs. �3� and

�4�, but it should be borne in mind that SAB�q�, hAB�r�, etc.,
are now the static structure functions and pair correlation
functions appropriate for the electronic bilayer liquid in the
zero-temperature quantum domain and, as such, these quan-
tities embody all the exchange-correlation effects. Accord-
ingly, D11

T �q� and D12
T �q� are to be calculated from Eqs. �3b�

FIG. 1. G11�q�±G12�q� as a function of q̄=q /qF for rs=10 and
d /a=0.2 �normal fluid�, 0.5 �normal fluid�, 1.0 �normal fluid�, and
1.5 �normal fluid�; qF=�2�n. The curves are generated from Eqs.
�3b� and �4b�, and GAB�q�= ��sq�2�e2�DAB

T �q��, with the input of
diffusion Monte Carlo pair distribution function data �20,22�.

FIG. 2. G11�q�±G12�q� as a function of q̄=q /qF for rs=20 and
d /a=0.2 �normal fluid�, 1.0 �normal fluid�, and 1.5 �fully spin-
polarized fluid�. The curves are generated from Eqs. �3b� and �4b�,
and GAB�q�= ��sq / �2�e2�DAB

T �q��, with the input of diffusion
Monte Carlo pair distribution function data �20,22�.
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and �4b� with the input of the diffusion Monte Carlo �DMC�
pair distribution function data �20,22�a�,22�c�,22�f��.

The various relevant phases of the symmetric electronic
bilayer at zero temperature have been mapped by Rapisarda
and Senatore in Refs. �22�a�,22�d�� and are further described
in some detail in Ref. �20� along with the DMC pair distri-
bution function data. At rs=10,30, the normal fluid �spin-
unpolarized� gAB�r�=1+hAB�r� data displayed in Figs. 1 and
3 of Ref. �20� are the appropriate inputs into the Eqs. �3b�
and �4b� for the computation of D11

T �q� and D12
T �q�. At rs

=20 and d /a=0.2, the appropriate inputs again are the nor-
mal fluid gAB�r� data displayed in Fig. 2 of Ref. �20�; for
d /a=1.0 and 1.5, the gAB�r� data for the fully spin-polarized
and normal fluids are very nearly the same. Thus, it makes
little difference which of these data are selected as inputs
into Eqs. �3b� and �4b�. We have chosen as inputs the spin-
unpolarized data for rs=20, d /a=1.0 and the fully spin-
polarized data for rs=20, d /a=1.5 �also displayed in Fig. 2
of Ref. �20��.

To facilitate the collective mode analysis that follows in
Sec. III, we introduce the more convenient dimensionless
quantity GAB�q�= ��sq / �2�e2��DAB

T �q�, which formally re-
sembles a static local field correction. However, one should
bear in mind that, similarly to the Ref. �20� companion lon-
gitudinal study, the physical justification for this term is dif-
ferent from that of the conventional static mean field.
G11

T �q�±G12
T �q� are shown in Figs. 1–3 as functions of di-

mensionless in-plane wave number q̄=q /qF for different rs

and d /a values; qF=�2�n is the 2D Fermi wave number.
The small-q behavior of G11

T and G12
T is given by Eqs. �5� and

�6� which stipulate that to lowest order in q,

G11�q → 0� + G12�q → 0�

= −
�2

16
�E11 + E12

e2/a
	q̄ −

�2q̄

16�e2/a�
n

�

��
q�

�12�q��h12�q���q�d − 2q�2d2� , �14�

G11�q → 0� − G12�q → 0�

= −
1

q�
�
q�

q�h12�q��e−q�d

=
1

2q



0

�

dr
rh12�r�

�r2 + d2�3/2�1 −
3d2

r2 + d2	; �15�

E11 = �n/2� 
 dr�11�r�h11�r� = �1/2���
q

�11�q��S11�q� − 1� ,

�16�

E12 = �n/2� 
 dr�12�r�h12�r� = �1/2���
q

�12�q�S12�q� .

�17�

E11=e2�int / �2aB� represents the total in-layer interaction en-
ergy per particle consisting of the inlayer Hartree-Fock ex-
change and potential energy contributions �int=�ex+�pot

�ex = −
8�2

3�rs
, �pot =

1

rs

�

�rs
�rs

2�c�; �Ryd� , �18�

�c is the correlation energy per particle in Rydberg units; E12
is the interlayer potential energy per particle. Since E11 is the
main ingredient of the shear mode acoustic velocity in the
isolated �d /a→ � � 2D electron layer �see Eqs. �26� and �28�
and the text that follows�, it is instructive to comment on the
effect of degeneracy on E11. Equation �18� shows how the
genuine Coulomb correlation effects contribute to E11 at zero
temperature; as a reminder, the kinetic energy for the inter-
acting system also has a somewhat similar correlational part,
�kin

c =−�� /�rs��rs�c�. At finite temperatures �lower degenera-
cies�, the Hartree-Fock exchange energy and correlational
contribution to the kinetic energy are diminished whereas the
correlational contribution to the interaction energy is in-
creased, the latter evidently at the expense of the correla-
tional contribution to �kin. Both the Hartree-Fock exchange
energy and the correlational part of the kinetic energy even-
tually drop off to zero in the high-temperature classical limit,
at which point all the Coulomb correlation effects reside
solely in the interaction energy, that is, the interaction energy
and the correlation energy become one and the same: E11
=Ec=−1.095e2 /a+0.985 kT �28�. This brings us to the ques-
tion: to what extent is the value of E11 affected by the degree
of degeneracy? To address this question, we consider the
isolated 2D electron liquid in the strong coupling regime first
at zero temperature. At rs=20, �ex=−0.06 Ryd and using the
fitted correlation energy formula �14� of Ref. �29�, we calcu-
late �pot=−0.041 Ryd. These total to E11=−1.012e2 /a. Com-
pare this with the E11=−1.07e2 /a value calculated from
Lado’s fitting formula quoted above for a classical 2D elec-
tron liquid at �=40 �keeping in mind the �⇔2rs correspon-
dence� and we arrive at a difference of about 6% between the
ground-state and classical interaction energies.

As to the asymptotic behavior of G11�q�±G12�q�,
our analysis indicates that G11�q→ � �±G12�q→ � �
=C±�d /a ,rs� / q̄; the dependence of the positive constant C±

FIG. 3. G11�q�±G12�q� as a function of q̄=q /qF for rs=30 and
d /a=0.2 �normal fluid�. The curves are generated from Eqs. �3b�
and �4b�, and GAB�q�= ��sq / �2�e2�DAB

T �q��, with the input of diffu-
sion Monte Carlo pair distribution function data �20,22�.
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on the interlayer spacing d /a is quite pronounced, whereas
its dependence on rs is weaker �Figs. 1–3�. For d�a, we
calculate C±1.13g11�r=0�+0.25+0.5�0.5

2 dyy−2g11�y�.

III. SHEAR MODE DISPERSION

We turn now to the calculation of the dispersion of the
in-phase and out-of-phase shear mode oscillation frequencies
based on the extended quantum QLCA �hereafter referred to
as “qQLCA”� expression �13� for �±

T�q ,�� with the Lindhard
function �0

T�q ,�� therein given by Eq. �12�. The qQLCA
formalism is not geared to describing all the principal damp-
ing processes, most notably, the diffusive-migrational damp-
ing mechanism �4,5� required for the dissipation of the low-
q in-phase shear mode; collisional damping is also operative,
with increasing importance at higher q values. In the high-rs
Coulomb liquid phase, the latter mechanism is absent from
the qQLCA model because particles on different quasi-sites
are virtually isolated from each other. This leaves Landau
damping �single pair excitations� as the sole mechanism re-
sponsible for the decay of collective excitations in the
present study. At zero temperature, the Landau damping is
confined to the RPA single-pair excitation region of the q̄,
�̄–plane �shown as the shaded region in Figs. 4–10; see Ap-
pendix, Eq. �A19��; �̄= �� /�F where �F=�n�2 /m is the
Fermi energy of the non-interacting 2D electron gas. For

�̄�0, the equations for the left and right boundaries of the
continuum are �̄=2q̄+ q̄2 and �̄=−2q̄+ q̄2, respectively.

The shear mode dispersion is to be calculated in the two
regions of the q̄ , �̄-plane exterior to be the RPA pair excita-
tion continuum where the modes are immune to Landau
damping. From Eqs. �A24�, �A26�, and the relation
�0

T�q ,��= �q2c2 /�2��0
T�q ,��, the formulas for the �0

T�q ,��
functions in these two regions are given as:

�0
T�q,�� = −

m

��2� 1

6�̄2q̄2 ����̄ − q̄2�2 − 4q̄2�3/2

− ���̄ + q̄2�2 − 4q̄2�3/2�	 −
m

��2�1 +
q̄4

3�̄2	
��̄ � 2q̄ + q̄2� , �19�

�0
T�q,�� = +

m

��2� 1

6�̄2q̄2 ����̄ − q̄2�2 − 4q̄2�3/2

+ ���̄ + q̄2�2 − 4q̄2�3/2�	 −
m

��2�1 +
q̄4

3�̄2	
��̄ � − 2q̄ + q̄2� . �20�

The starting point for the calculation of the collective mode
frequencies �±�q� is the general bilayer transverse dispersion
relation

FIG. 4. �Color online� In-phase shear mode dispersion curves
for rs=10 and d /a=0.2, 0.5, 1.0, 1.5, and �. �a� Calculated from
primitive transverse QLCA dispersion relation �24� with Eqs. �3b�
and �4b�. �b� Calculated from extended transverse qQLCA disper-
sion relation �23� with Eqs. �3b�, �4b�, �19�, and �20�. The shaded
region in �b� is the RPA pair excitation continuum; �0

=�2�ne2 /ma; a=1/��n.

FIG. 5. �Color online� Out-of-phase shear mode dispersion
curves for rs=10 and d /a=0.2, 0.5, 1.0, and 1.5. �a� Calculated
from primitive transverse QLCA dispersion relation �24� with Eqs.
�3b� and �4b�. �b� Calculated from extended transverse qQLCA dis-
persion relation �23� with Eqs. �3b�, �4b�, �19�, and �20�. The
shaded region in �b� is the RPA pair excitation continuum; �0

=�2�ne2 /ma; a=1/��n.

GOLDEN et al. PHYSICAL REVIEW E 74, 056405 �2006�

056405-6



�±
T�q,�� =

q2c2

�2 . �21�

At this stage of the development, we invoke the quasistatic
approximation �5,7,9�, which amounts to neglecting retarda-
tion effects by formally setting c equal to infinity. This ap-
proximation, also invoked in the derivation of Eq. �13�, is
tantamount to restricting our study to the �exceedingly
broad� wave number domain q̄��2rs�F /mc2. The transverse
± oscillation frequencies, �±�q�, are then to be calculated
from the dispersion relations

1

�±
T�q,��

= 0, �22�

where from Eq. �13�

1 +
2�e2

q
�0

T�q,�±�q���G11�q� ± G12�q�� = 0. �23�

In the analysis that follows, it will be of interest to compare
Eq. �23� with its primitive QLCA counterpart

1 −
2�e2nq

m�±
2�q�

�G11�q� ± G12�q�� = 0 �24�

that results from Eq. �22� with the input of Eq. �2� in the
quasistatic limit �nonretarded� limit. Clearly, Eq. �24� is
mathematically more tractable than Eq. �23� in that �24� can

be solved explicitly for �±�q� whereas �23� has to be solved
numerically. However, this advantage comes at too high a
cost since, for one thing, Eq. �24� does not take account of
Landau damping.

We have solved both Eq. �23� �with �19� and �20�� and Eq.
�24� over a wide range of rs and d /a values, with the input of
the DMC pair distribution function data generated by Rap-
isarda and Senatore �20,22�. The resulting dispersion curves
in the q̄ , �̄-plane are displayed in Figs. 4–10. Each figure
shows two panels labeled “�a�” and “�b�”: the �a� panels
show the dispersion curves �devoid of the RPA pair con-
tinuum� resulting from primitive QLCA Eq. �24�; the �b�
panels show the dispersion curves resulting from qQLCA Eq.
�23�. The latter, of course, are the ones that are primarily of
interest in the present work. The primitive QLCA dispersion
curves are displayed because it is of interest to compare them
with the primitive QLCA dispersion curves in Refs. �8,9�
generated from classical hypernetted-chain �HNC� radial dis-
tribution function data �30�. Two perspectives are presented:
�i� In Figs. 4–8, the oscillation frequencies are normalized
with respect to the nominal 2D plasma frequency �0
=�2�ne2 /ma �the value of the 2D electron plasma frequency
�2D�q�=�2�ne2q /m at in-plane wave number q=1/a�, and
the dispersion curves are displayed as functions of d /a for
fixed rs. �ii� In Figs. 9 and 10, the oscillation frequencies are
normalized with respect to the 2D Fermi frequency �F
=�F / � =�n� /m, and the dispersion curves are displayed as
functions of rs for d /a=0.2.

FIG. 6. �Color online� In-phase shear mode dispersion curves
for rs=20 and d /a=0.2 �normal fluid�, 1.0 �normal fluid�, 1.5 �fully
spin-polarized fluid�, and � �normal fluid�. �a� Calculated from
primitive transverse QLCA dispersion relation �24� with Eqs. �3b�
and �4b�. �b� Calculated from extended transverse qQLCA disper-
sion relation �23� with Eqs. �3b�, �4b�, �19�, and �20�. The shaded
region in �b� is the RPA pair excitation continuum; �0

=�2�ne2 /ma; a=1/��n.

FIG. 7. �Color online� Out-of-phase shear mode dispersion
curves for rs=20 and d /a=0.2 �normal fluid�, 1.0 �normal fluid�,
and 1.5 �fully spin-polarized fluid�. �a� Calculated from primitive
transverse QLCA dispersion relation �24� with Eqs. �3b� and �4b�.
�b� Calculated from extended transverse qQLCA dispersion relation
�23� with Eqs. �3b�, �4b�, �19�, and �20�. The shaded region in �b� is
the RPA pair excitation continuum; �0=�2�ne2 /ma; a=1/��n.
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We note the marked contrast between the rs=20 primitive
QLCA ± shear mode dispersion curves �Figs. 6�a� and 7�a��
generated from the quantum DMC gAB�r� data �18,20� and
the corresponding �=40 primitive QLCA dispersion curves
in Refs. �8,9� generated from classical hypernetted-chain
�HNC� gAB�r� data �30�: The DMC-generated dispersion
curves exhibit near-monotonic or only very mild oscillatory
behavior, whereas the HNC-generated dispersion curves ex-
hibit somewhat more pronounced oscillations. This differ-
ence mirrors the same dissimilar behaviors of the quantum
�20,22� and classical �30� pair distribution function inputs,
respectively �20�. Implicit in these dissimilar behaviors is the
interplay of degeneracy, exchange, and genuine Coulomb
correlation effects.

Outside the RPA single-pair excitation region, the trajec-
tories of the out-of-phase primitive QLCA and qQLCA dis-
persion curves, at first glance, do not appear to be all that
different from each other �Figs. 5, 7, 8, and 10�. At small
layer separations, however, one difference is especially ap-
parent: In the region above the left boundary of the RPA pair
continuum the out-of-phase primitive QLCA dispersion
curve �Fig. 10�a��, similarly to its classical QLCA/HNC
counterpart �8,9�, is concave up ��2�̄ /�q̄2
0� at q̄=0, devel-
ops an inflection point thereafter, and subsequently becomes
concave down ��2�̄ /�q̄2�0�. By contrast, the out-of-phase
qQLCA dispersion curve �Fig. 10�b�� is always concave up
in the region above the RPA pair continuum and remains so
right up to the continuum boundary.

At d /a=1.5, the separated layers become practically un-
correlated and the in-phase shear mode dispersion becomes
virtually the same as the shear mode dispersion in the iso-
lated 2D electron layer �see Figs. 4 and 6�.

In the q̄=0 limit, �+�0�=0 and

�−�0�
�0

=
�GAP

�0
=�a

2



0

�

dr
rh12�r�

�r2 + d2�3/2�1 −
3d2

r2 + d2	 .

�25�

The correlation-induced finite-frequency energy-gap expres-
sion �25� is formally identical to the expression for the en-
ergy gap reported in the Refs. �8,9,20� primitive QLCA �8,9�
and extended qQLCA �20� studies of the out-of-phase longi-
tudinal plasmon in charged-particle bilayer liquids. The q
=0 gap frequency, calculated in Ref. �20� from Eq. �19� with
the input of the Rapisarda-Senatore DMC data �20,22� for
h12�r�, is already displayed in Fig. 11 of Ref. �20� as a func-
tion of d /a for rs values of 10 and 20. With increasing d/a
and consequently decreasing interlayer correlations, �−�0�
shows a decreasing tendency and it virtually vanishes for
d /a
1.5. The q=0 energy gap is a unique feature of the
primitive QLCA and qQLCA approaches and its existence in
classical bilayers has been confirmed by recent MD simula-
tions �10,31�. Since the physical conditions leading to the
gap are similar in the classical and quantum domains, there is

FIG. 8. �Color online� In-phase and out-of-phase dispersion
curves for rs=30 and d /a=0.2 �normal fluid� and � �normal fluid�.
�a� Calculated from primitive transverse QLCA dispersion relation
�24� with Eqs. �3b� and �4b�. �b� Calculated from extended trans-
verse qQLCA dispersion relation �23� with Eqs. �3b�, �4b�, �19�, and
�20�. The shaded region in �b� is the RPA pair excitation continuum;
�0=�2�ne2 /ma; a=1/��n.

FIG. 9. �Color online� In-phase dispersion curves for d /a=0.2
�normal fluid� and rs=10,20 and 30. �a� Calculated from primitive
transverse QLCA dispersion relation �24� with Eqs. �3b� and �4b�.
�b� Calculated from extended transverse qQLCA dispersion relation
�23� with Eqs. �3b�, �4b�, �19�, and �20�. The shaded region in �b� is
the RPA pair excitation continuum; �̄= �� /�F, �F=�n�2 /m is the
2D Fermi energy.
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little doubt that the results of the classical MD simulations
should be relevant to the Ref. �20� study and to the present
work as well. Moreover, the sum-rule analysis of Ref.�32�
provides a rigorous theoretical basis for expecting that the
existence, but not the magnitude, of the energy gap in bilayer
liquids is a statistics-independent phenomenon. We note,
however, that at small layer separations, the MD gap value is
about 30–40 % higher than the classical QLCA value �10�.
The resolution of this discrepancy is being worked out and
will be published in a future paper �33� that deals with this
same issue in the broader context of asymmetric classical
bilayer liquids �34� as well.

At long wavelengths, the in-phase and out-of-phase shear
mode frequencies

�̄+�q → 0� =
4rs�

�4rs� − 1
q̄ , �26�

�̄−�q → 0� = �̄GAP +
q̄2

2�̄GAP

�1 + �� , �27�

��rs,d/a� = −
1

16

E11 + E12

�e2/a�
−

n

16�e2/a�
1

�

��
q�

�12�q��h12�q���q�d − 2q�2d2� , �28�

��rs,d/a� = −
rs

2

E11 − E12

�e2/a�
+

rs

2

n

�e2/a�
1

�

��
q�

�12�q��h12�q���q�d − 2q�2d2� , �29�

result from the small-q expansions of Eqs. �23� and �19�,
using Eqs. �14� and �15�; � and � are positive coefficients.
Recasting �26� in the form �̄+=�q̄ to facilitate discussion, it
is clear that for a given d /a value, there is a critical rs value,
below which ��2, indicating a merging of the in-phase
acoustic shear mode with the RPA pair continuum. To have a
rough estimate of that critical value, it suffices here to con-
sider the isolated 2D layer �d /a→ � � limit, where there is
only the inlayer interaction energy, �int=�ex+�pot �see Eq.
�18��; �pot can be readily calculated with the input of the
correlation energy and its first derivative using the Tanatar-
Ceperley �29� fitted MC formula �14�. Our calculations indi-
cate that � increases from 2.035 to 2.97 as rs increases from
10 to 30. Evidently, in the isolated 2D layer limit, the
qQLCA predicts that for rs�10, no transverse shear mode
can propagate in the domain above the left continuum
boundary. It is again instructive to note that, except for the
presence of the RPA pair continuum in the zero-temperature
quantum domain, the acoustic dispersion itself for the in-
phase shear mode is only slightly modified by degeneracy
effects in the strong coupling regime. To further demonstrate
this, it suffices here to again consider the isolated 2D layer
limit and compare our qQLCA shear mode acoustic disper-
sion coefficients �	 phase velocities� for the zero-
temperature quantum liquid at rs=20 and 30 with the disper-
sion coefficients for the finite-temperature classical liquid �5�
at �=40 and 60, respectively �keeping in mind the corre-
spondence �⇔2rs�. From Eq. �26�, we calculate �+�q
→0�rs=20=0.281qa�0 and �+�q→0��rs=30=0.271qa�0; these
values are very nearly the same as their respective Ref. �5�
finite-temperature counterparts �+�q→0��=40=0.279qa�0

and �+�q→0��=60=0.274qa�0.
Keeping this observation in mind, and the additional ob-

servation that in the classical regime, the acoustic dispersion
is only very weakly dependent on coupling strength for �

40 �note that �+�q→0�=0.268qa�0 at �=120 �5��, we can
compare the qQLCA acoustic shear mode dispersion results
for the 2D zero-temperature quantum liquid with the Ref.
�17� experimental measurements of transverse shear mode
dispersion in 2D dusty plasma liquids. To the best of our
knowledge, these measurements are the only such available
on this topic in 2D and/or layered charged-particle systems.
For the comparison, we select the measurements that are
based on the SFACW �spatial Fourier analysis of complex
wave numbers� method. Figure 11�a� shows the �solid�
qQLCA acoustic dispersion curve at rs=20 matched with the
six SFACW-based shear mode data points at �x=128, �y
=158; in Fig. 11�b�, the qQLCA dispersion curve at rs=30 is
matched with the SFACW-based data near the melting point
��200� of the 2D dust crystal. The vertical lines on the
solid theory curves mark the qa values where the acoustic
lines make contact with the RPA pair continuum boundary
�qa=0.778 for rs=20 and qa=1.344 for rs=30�. The reliabil-

FIG. 10. �Color online� Out-of-phase dispersion curves for
d /a=0.2 �normal fluid� and rs=10, 20 and 30. �a� Calculated from
primitive transverse QLCA dispersion relation �24� with Eqs. �3b�
and �4b�. �b� Calculated from extended transverse qQLCA disper-
sion relation �23� with Eqs. �3b�, �4b�, �19�, and �20�. The shaded
region in �b� is the RPA pair excitation continuum; �̄= �� /�F

where �F=�n�2 /m is the 2D Fermi energy.
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ity of our theoretical calculations is best assessed by compar-
ing with a sufficient number of experimental data points. To
this end, to facilitate the comparison at both rs=20 and 30,
we can for the moment ignore the presence of the RPA pair
continuum �precisely akin to the Eq. �24� primitive QLCA
description� and allow the qQLCA acoustic dispersion curve
to continue beyond the left boundary marker up to the qa
value marking the location of the sixth data point from Ref.
�17�. Agreement between theory and experiment is favorable
at both rs values.

The rs=10 lower bound imposed by Landau damping not-
withstanding, there is yet another damping mechanism—
diffusive-migrational damping �4,5,8,9�—which is operative
mostly in the region of the q̄ , �̄-plane on and above the left
boundary of the RPA single-pair excitation continuum. This
low-q damping mechanism will act to suppress those shear
modes when their oscillation frequencies �±�q� fall below
some critical frequency �min=1/�D. We note, however, that
the present qQLCA formalism, with its frequency-
independent GAB

T �q�, is tantamount to a static mean field
theory, and, as such, is incapable of producing diffusive-
migrational damping. Nevertheless, an order-of-magnitude
estimate for �min can be made based on the assumption that

the shear mode disappears when the diffusion time �D is
shorter than the oscillation period, i.e., when ��D�1; �D can
be estimated as �D�2 /D, where D=�0a2D* is the self-
diffusion coefficient and � is a characteristic migration dis-
tance of a particle from its quasisite position sufficient to
disrupt the generation of the restoring shear force. Some time
ago, Lee and Hong �35� and Holas, Nagano, and Singwi �36�
calculated a companion transport coefficient, the intrinsic
conductivity �relating to the presence of a random current�,
in the zero-temperature 2D electron gas free of impurities
�2DEG�. These inherently weak-coupling calculations of the
intrinsic conductivity could shed some light on how one
might proceed in the future to the calculation of the velocity
autocorrelation function and self-diffusion coefficient in
2DEGs. As to the strong coupling regime, information per-
taining to the self-diffusion coefficient in 2D and 3D electron
liquids in the zero-temperature quantum domain is, to the
best of our knowledge, lacking in the literature. Neverthe-
less, for the high-rs values considered in the present work—
presumably sufficient to ensure quasilocalization of the
particles—one expects that self-diffusion in the strong cou-
pling regime of the zero-temperature quantum domain
should be reasonably well described by self-diffusion in the
classical domain where MD data are readily available for the
pure OCP in three �1,37� and two dimensions �38,39� and for
the charged-particle bilayer �40�. Proceeding then on that
premise, our estimates will be based on information about
D extracted from the classical OCP molecular dynamics
literature, keeping in mind the equivalence �⇔2rs in 2D
��=e2 / �akBT��. In the bilayer, one would expect that, as long
as the liquid phase is maintained as the separation between
the layers is varied �40�, the self-diffusion coefficient should
increase with increasing d /a reaching a maximum value at
d /a→�. Consequently, calculations of �min based on the
self-diffusion coefficients for an isolated 2D electron layer
may well give overestimates of the diffusive-migrational
damping �min values for the bilayer. As in previous estimates
�5,8,9�, it suffices here to adapt the 3D molecular dynamics
fitting formula D*=2.95/�1.34 �1,37� to the calculation of the
2D self-diffusion coefficient over the range of coupling val-
ues from rs=10 to 30. We obtain D�rs=10�=0.06�0a2,
D�rs=20�=0.032�oa2, and D�rs=30�=0.014�0a2. Note how
favorably the D�rs=20�=0.032�oa2 value compares with the
near-corresponding D��=36�=0.0332�oa2 value extracted
from the Ref. �38� MD simulations of the 2D OCP. Taking
�=0.6a �note: the Lindeman melting criterion for the 2D
quantum triangular crystal requires only �=0.57a �41��, one
obtains �min�rs=10�=0.167�0, �min�rs=20�=0.089�0, and
�min�rs=30�=0.039�0.

Consequently, our findings in the domain above and on
the left boundary of the RPA single-pair excitation region can
be summarized as follows: �i� Over the coupling range 10
�rs�30, the out-of-phase gapped shear mode �Figs. 5�b�,
7�b�, 8�b�, and 10�b�� can be safely considered not to be
seriously affected by diffusive-migrational damping for d /a
�0.5. �ii� At rs=20, those portions of the surviving out-of-
phase dispersion curves lying above the �min�rs=20�
=0.089�0 threshold will begin their trajectories as heavily
damped modes for d /a�1.0; the damping abates somewhat

FIG. 11. In-phase shear mode dispersion for the isolated �d /a
→ � � 2D charged-particle layer. Comparison of theoretical �solid
lines� 2D acoustic dispersion in the zero-temperature 2D electron
liquid �calculated from qQLCA Eq. �23�� with Ref. �17� SFACW
experimental measurements �spatial Fourier analysis of complex
wave numbers method� of shear wave dispersion in liquid 2D dusty
plasma: �a� rs=20 qQLCA theory matched with �x=128, �y =158
data �including the two horizontal error bars from Ref. �17� Fig.
8�a��; �b� rs=30 qQLCA theory matched with �200 data. The
vertical lines on the solid �theory� curves mark the qa values where
the acoustic lines penetrate the RPA pair continuum boundary �qa
=0.778 for rs=20 and qa=1.344 for rs=30�.
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with increasing q up to the left continuum boundary. �iii� At
rs=10, the in-phase mode �Fig. 4�b�� is suppressed by
diffusive-migrational damping for all d /a�0.2. �iv� At rs
=20 �Figs. 6�b� and 9�b��, the surviving portions of the in-
phase acoustic dispersion curves lying above the �min�rs

=20�=0.089�0 threshold are expected to be strongly to mod-
erately damped for d /a�0.2; the decrease in the damping
with increasing wave number �for q values all the way up to
the continuum boundary� is consistent with the Ref. �17�
experimental findings pertaining to the damping of shear
waves in liquid 2D dusty plasma. �v� Atrs=30 and d /a
=0.2, where the bilayer is in a borderline normal liquid/
square lattice phase, there is a substantial portion of the in-
phase acoustic curve �Figs. 8�b� and 9�b�� lying above the
�min threshold that can be safely considered not to be seri-
ously affected by diffusive-migrational damping. However,
for d /a→� and at this rs value, the bilayer is in the liquid
phase and the surviving portion of the in-phase acoustic
mode is expected to be heavily to moderately damped for q
values extending all the way up to the RPA pair continuum
boundary. Again, this is consistent with the Ref. �17� experi-
mental findings cited in �iv� above.

The emergence of the qQLCA ± transverse shear mode
dispersion curves from the right boundary of the single-pair
excitation region �Figs. 4�b�, 5�b�, 6�b�, 7�b�, 8�b�, 9�b�, and
10�b�� is, to the best of our knowledge, reported here for the
first time �42�, though this is probably only of academic in-
terest, since it is unlikely that these high-q modes can ulti-
mately survive the damping mechanism due to decay into
multiple pair excitations. In a highly correlated Coulomb liq-
uid, multiple pair excitations, which are not taken into ac-
count in the present theory, are operative with increasing
importance at shorter wavelengths. It is expected that the
high-q portions of the emergent shear mode dispersion curve
will ultimately be suppressed by this process. �This same
outcome was also conjectured for the �=40 �corresponding
to rs=20� emergent dispersion curves in the classical bilayer
liquid �8,9�.� However, for rs=30, d /a=0.2, where the par-
ticles are highly localized in a borderline liquid/square lattice
phase �22�a�,22�d��, one would expect that the ± emergent
modes are immune to this process.

IV. CONCLUSIONS

In this paper, we have formulated a transverse dielectric
matrix that contains information about shear mode behavior
in strongly coupled symmetric charged-particle bilayer liq-
uids in the zero-temperature quantum domain. This has been
carried out over a wide range of liquid-phase coupling values
10�rs�30 and layer spacings 0.2a�d��. Our derivation
is based on an extension of the classical quasilocalized
charge approximation �QLCA� �9,16� into the quantum do-
main. The development of the extended transverse QLCA
formalism of the present work parallels and complements the
development of its Ref. �20� companion longitudinal dielec-
tric matrix formalism.

The extended transverse QLCA formalism of the present
work, referred to in the main body of the text as the qQLCA,
like its Ref. �20� longitudinal counterpart, requires the input

of intralayer and interlayer pair distribution function data.
These were generated from diffusion Monte Carlo simula-
tions by Rapisarda and Senatore �22� and are also displayed
in Figs. 1-3 of Ref. �20�.

The formulation of the transverse dielectric matrix results
in the expression Eq. �13� for the in-phase �+� and out-of-
phase �−� transverse dielectric functions �+

T�q ,�� and
�−

T�q ,��, respectively, leading to a description of the two
transverse collective modes via the nonretarded dispersion
relation �23�.

Referring to the domain of the q̄ , �̄-plane above the left
boundary of the single-pair excitation region, our findings
can be summarized as follows: �i� The out-of-phase gapped
shear mode is robust over the Coulomb liquid-phase range
10�rs�30 for 0.2�d /a�0.5; under these in-layer cou-
pling and interlayer spacing conditions, the out-of-phase col-
lective excitation is entirely immune to Landau damping and
can be safely considered not to be seriously affected by
diffusive-migrational damping. This is the main result of the
present work. �ii� At rs=20, those portions of the surviving
out-of-phase dispersion curves lying above the �min�rs=20�
=0.089�0 threshold will begin their trajectories as heavily
damped modes for d /a�1.0; the damping abates somewhat
with increasing q up to the left continuum boundary. �iii� At
rs=10, the in-phase mode �Fig. 4�b�� is suppressed by
diffusive-migrational damping for all d /a�0.2. �iv� At rs
=20 �Figs. 6�b� and 9�b��, the surviving portions of the in-
phase acoustic dispersion curves lying above the �min�rs

=20�=0.089�0 threshold are expected to be strongly to mod-
erately damped for d /a�0.2; again, the damping decreases
with increasing wave number up to the left boundary of the
pair continuum. �v� At rs=30 and d /a=0.2, where the bilayer
is in a borderline normal liquid/square lattice phase, there is
a substantial portion of the in-phase acoustic curve �Figs.
8�b� and 9�b�� lying above the �min threshold that can be
safely considered to be mostly unaffected by diffusive-
migrational damping.

With the possible exception of the �rs=30, d /a=0.2� bor-
derline liquid/square lattice phase, the in-phase and out-of-
phase shear mode dispersion curves emerging from the right
boundary of the RPA single-pair excitation region are ex-
pected to be heavily damped by binary collisions. This same
outcome was predicted for the emergent curves in the clas-
sical bilayer liquid �8,9� at �=40 �corresponding to rs=20�.

Note added. Further analysis of dispersion relation �23�
suggests that the rs=20, 30 dispersion curves �Figs. 6�b�–
10�b��, in fact, can cross the left and right boundaries of the
RPA single-particle excitation region and extend partially
into the region. Then moving along a ��q ;rs� dispersion
curve from either boundary towards the interior of the con-
tinuum, our analysis suggests that the Landau damping pro-
gressively increases from very weak �in the vicinity of the
boundary where Im�0

T(q ,��q�)� �Re�0
T(q ,��q�) � � to strong,

intensifying to the point where the mode becomes too
heavily damped to survive. For example, at rs=20 and d /a
=0.2, the out-of-phase mode enters the left boundary at qL
=2.07 and persists somewhat beyond q=2.3 where the Lan-
dau damping rate has reached a value ��L � �0.11�. The
mode then ceases to be viable within the open interval 2.3
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�q�3.2. The q=3.2 upper bound marks the point where
��L � �0.14�, and where the mode can thus be considered to
be revived, becoming more and more robust as q increases
beyond 3.2; the dispersion curve subsequently emerges from
the right boundary at qR=3.84 entirely free of Landau damp-
ing.

ACKNOWLEDGMENTS

This material was based upon work supported by the Na-
tional Science Foundation under Grant Nos. PHY-0206554
and PHY-0514618. K.I.G. thanks Gabor Kalman and M.
Howard Lee for helpful discussions.

APPENDIX

In this Appendix, we present a derivation of the Lindhard
transverse �T� dielectric function, �0

T�q ,��, for the two-
dimensional free-electron gas; external magnetic fields are
assumed to be entirely absent. The derivation parallels the
Ehrenreich-Cohen �24� and Kliewer-Fuchs �25� self-
consistent field �SCF� calculations for the three-dimensional
electron gas. We explicitly evaluate �0

T�q ,�� at zero tempera-
ture both inside and outside the RPA single-particle excita-
tion region of the � ,q-plane. The Coulomb gauge is assumed
throughout.

Let the 2DEG occupy the z=0 plane of a Cartesian coor-
dinate system and let A�x , t� be the total self-consistent vec-
tor potential response to a small electromagnetic disturbance.
The resulting single-particle Hamiltonian for an electron
having charge −e and mass m is

H =
1

2m
�p +

e

c
A	2

+ �; �A1�

p is the canonical momentum. Carrying out the routine linear
response calculation, let H=H0+H1, where the stationary
states of the free-electron Hamiltonian, H0= p2 /2m, are char-
acterized by the wave functions �k�↔�1/� exp�ik ·x� and
their corresponding eigenvalues �k=�2k2 /2m, viz.

H0�k� = �k�k� . �A2�

To lowest order in A

H1 =
e

2mc
�p · A + A · p� + � . �A3�

Accordingly, the linearized equation of motion for the single-
particle density matrix � is

i �
��

�t
= �H0,�1� + �H1�0�; �A4�

�=�0+�1, �1 being the perturbed part of � associated with
H1. In virtue of �A2�, the unperturbed density matrix opera-
tor �0= f�H0� has the property that �0 �k�= f��k� �k�, where
f��k�= �1+exp���k−�� /kT��−1 is the equilibrium Fermi func-
tion for a free electron with energy �k. Taking matrix ele-
ments of �A4� between states �k� and �k+q� and Fourier
transforming to the frequency domain, one obtains

�k��1����k + q� =
f��k+q� − f��k�

�k+q − �k + � �
Hq��� , �A5�

Hq��� = �k�H1����k + q�

=
e�

2mc

1

�
�2k + q� · A�− q,�� +

1

�
��− q,�� ,

�A6�

�1/��A�−q ,��= �k �A�x ,�� �k+q�. The average transverse
current density response, j�r ,��, at field point r is given by
the trace of the product of the density matrix and the single-
particle current density operator −�e /2���r−x�v+v�r−x��,
where the velocity operator v= �1/m��p+ �e /c�A�. To linear
order, the calculation then proceeds as follows:

j�r,�� = −
e

2m
Tr��p�r − x� + �r − x�p��1����

−
e2

mc
Tr�A�x,���r − x��0�

= −
e

2m
2�

k�

��k��p�r − x��1����k��

+ �k���r − x�p�1����k���

−
e2

mc
2�

k�

�k��A�x,���r − x��0�k��

= −
e�

m

1

�
�
k,q�

�2k + q��e−iq�·r�k��1����k + q��

−
ne2

mc
A�r,�� , �A7�

n= �2���kf��k� is the 2D unperturbed particle density. The
“2” factor in front of the summation signs is due to the two
spin states. Equations �A5� and �A6�, when combined with
the spatial Fourier transform of �A7�, then give

j�q,�� = −
2e2�2

m2c � 1

�
�
k
�k +

q

2
	�k +

q

2
	

�
f��k+q� − f��k�

�k+q − �k + � �	 · A�q,��

+
2e�

m�
�
k
�k +

q

2
	 f��k+q� − f��k�

�k+q − �k + � �
��q,��

−
ne2

mc
A�q,�� . �A8�

Without any loss of generality, we can take q= �q ,0 ,0� and
A= �0,A ,0�, so that the relevant transverse component of
�A8� simplifies to
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jy�q,�� = −
2e2�2

m2c � 1

�
�
k

ky
2 f��k+q� − f��k�
�k+q − �k + � �	A�q,��

−
ne2

mc
A�q,�� . �A9�

Comparison with the 2D constitutive relation �26�

jy�q,�� =
�2

2���q,��c
��0

T�q,�� − 1�A�q,�� , �A10�

then yields

�0
T�q,�� = 1 −

�2D
2 �q�
�2

��q,��
q

�1 + W�q,��� , �A11�

W�q,�� =
2

N
�
k

�2ky
2

m

f��k+q� − f��k�
�k+q − �k + � � + io

, �A12�

��q ,��=�q2−�2 /c2 is the familiar attenuation constant that
shows up in 2D phenomenological electrodynamics �26� and
�2D�q�=�2�ne2q /m is the 2D RPA plasma frequency. In the
finite-temperature, nonretarded classical �cl� limit, one re-
covers from �A11� the well-known Vlasov expression �5�

�0
T�q,���cl = 1 −

�2D
2 �q�
n�


 d2v
F�0��v�

� − q · v + io
, �A13�

F�0��v�=n��m /2��exp�−�mv2 /2� is the Maxwellian distri-
bution function. As an aside, we note the marked structural
difference between the transverse RPA expressions �A11�
and �A13� and their respective longitudinal RPA quantum
�24,43,44� and classical counterparts

�0
L�q,�� = 1 −

2�e2

q

2

A�
k

f��k+q� − f��k�
�k+q − �k + � � + io

, �A14�

��0
L�q,���cl = 1 +

�

q
�1 −

�

n

 d2v

F�0��v�
� − q · v + io

	 ,

�A15�

�=2��ne2 is the 2D Debye length.
The explicit evaluation of �A11� in the zero temperature

quantum domain is carried out by first recasting �A12� in the
more convenient integral form

W�q,�� =
1

2�2n

 dk

�2ky
2

m
f�k�

�� 1

� + � k · q/m − � q2�2m� + io

−
1

� + � k · q/m + � q2/�2m� + io
	 , �A16�

which, at zero temperature, becomes

W�q,�� =
�

�2mn



−kF

kF

dkx�kF
2 − kx

2�3/2

�� 1

� + � qkx/m − � q2/�2m� + io

−
1

� + � qkx/m + � q2/�2m� + io
	 , �A17�

kF=�2�n is the 2D Fermi wave number. Separating the real
and imaginary parts,

Re W�q,�� =
�

�2mn



−kF

kF

dkx�kF
2 − kx

2�3/2

�P� 1

� + � qkx/m − � q2/�2m�

−
1

� + � qkx/m + � q2/�2m�	 , �A18�

Im W�q,�� = −
1

�nq
�kF

2 − �m�

�q
−

q

2
	2	3/2

�����qkF

m
+

�q2

2m
− �	

− ��−
�qkF

m
+

�q2

2m
− �	� +

1

�nq

��kF
2 − �m�

�q
+

q

2
	2	3/2

���qkF

m
−

�q2

2m
− �	 ,

�A19�

where � is the unit step function. The further explicit evalu-
ation of the Eq. �A18� expression for Re W�q ,�� in the re-
gions of the q ,�-plane exterior to the RPA pair continuum is
facilitated by introducing the current-density response func-
tion via the constitutive relation �26�

j�q,�� = e2c�T�q,��A�q,�� . �A20�

The Lindhard transverse current density response function

�0
T�q,�� = −

n

mc2 �1 + W�q,��� �A21�

then results from comparison of �A11� with

�0
T�q,�� = 1 +

q2c2

�2 ��q,���0
T�q,�� , �A22�

where ��q ,��= �2�e2 /q2���q ,�� is the 2D effective interac-
tion potential. We next introduce the convenient dimension-
less quantities q̄=q /kF and �̄= �� /�F; �=�n�2 /m is the 2D
Fermi energy for the non-interacting electron gas at zero
temperature. The following expressions result:

Above the left boundary of the pair continuum ��̄�2q̄
+ q̄2�,
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�0
T�q̄,�̄� = 1 −

�2d
2 �q�
�2

��q,��
q

1

12q̄4 ����̄ − q̄2�2 − 4q̄2�3/2

− ���̄ + q̄2�2 − 4q̄2�3/2� −
�2d

2 �q�
�2

��q,��
q

�� �̄2

2q̄2 +
q̄2

6
	

= 1 +
q2c2

�2 ��q,���0
T�q,�� , �A23�

�0
T�q,�� = −

n

mc2

1

12q̄4 ����̄ − q̄2�2 − 4q̄2�3/2

− ���̄ + q̄2�2 − 4q̄2�3/2 + 6�̄2q̄2 + 2q̄6� .

�A24�

Below the right boundary of the pair continuum �0��̄
�−2q̄+ q̄2�,

�0
T�q̄,�̄� = 1 +

�2d
2 �q�
�2

��q,��
q

1

12q̄4 ����̄ − q̄2�2 − 4q̄2�3/2

+ ���̄ + q̄2�2 − 4q̄2�3/2� −
�2d

2 �q�
�2

��q,��
q

�� �̄2

2q̄2 +
q̄2

6
	 , �A25�

�0
T�q̄,�̄� = +

n

mc2

1

12q̄4 ����̄ − q̄2�2 − 4q̄2�3/2

+ ���̄ + q̄2�2 − 4q̄2�3/2 − 6�̄2q̄2 − 2q̄6� .

�A26�
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